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Rigid-body refinement is the constrained coordinate refinement of one or more

groups of atoms that each move (rotate and translate) as a single body. The goal

of this work was to establish an automatic procedure for rigid-body refinement

which implements a practical compromise between runtime requirements and

convergence radius. This has been achieved by analysis of a large number of trial

refinements for 12 classes of random rigid-body displacements (that differ in

magnitude of introduced errors), using both least-squares and maximum-

likelihood target functions. The results of these tests led to a multiple-zone

protocol. The final parameterization of this protocol was optimized empirically

on the basis of a second large set of test refinements. This multiple-zone protocol

is implemented as part of the phenix.refine program.

1. Introduction

The vast majority of macromolecular crystal structures are

solved either with experimental phasing methods (see, for

example, Blow & Crick, 1959; Hendrickson, 1991) or with the

molecular replacement method (Rossmann & Arnold, 2001,

and references therein). In the case of experimental phasing

the model is built into an electron density map. The resulting

model may contain many local errors, but significant concerted

displacements are not expected. In contrast, models obtained

via molecular replacement or with difference Fourier methods

can be systematically displaced. In this situation rigid-body

refinement (Booth, 1947a,b, 1949; Cochran, 1948; Scheringer,

1963; Sussman et al., 1977; Hoard & Nordman, 1979; Huber &

Schneider, 1985; Yeates & Rees, 1988; Derewenda, 1989;

Urzhumtsev et al., 1989; Driessen et al., 1989; Yeates & Rini,

1990; Brünger, 1990a,b, 1991; Castellano et al., 1992; Noble et

al., 1993; Navaza, 2001; Tronrud, 2004; McCoy, 2007; Lebedev

et al., 2008) is a powerful method for correcting potentially

large systematic displacements. Outside the field of crystal-

lography, rigid-body refinement is also an important tool when

fitting models into electron microscopy envelopes (see, for

example, Navaza et al., 2002, and numerous references

therein). Rigid-body refinement may also be a way of

performing coordinate refinement when only very low reso-

lution data are available.

Rigid-body refinement moves groups of atoms as a whole,

leaving the internal configuration of each group unchanged. It

is well understood that the information about the large-scale

distribution of atoms is contained in the low-resolution

diffraction data. The high-resolution data convey information

about the finer details of the atomic structure. Since these

details are invariant during rigid-body refinement, it is

expected that high-resolution data will be less important for

this procedure than the low-resolution data. Inclusion of high-

resolution data is known to hamper the progress of refinement

(see, for example, Sheldrick, 2008; Sheldrick & Schneider,

1997; Tronrud, 2004). Least-squares refinement (LS) is

expected to be more affected than maximum-likelihood

refinement (ML), since the latter is designed to automatically

weight down terms with poor model-to-data correspondence

(Lunin et al., 2002), i.e. data at high resolution at the beginning

of refinement.

When choosing the high-resolution cutoff for refinement, a

practical balance between convergence radius, accuracy of the

results and computational cost has to be found. Generally,

moving the cutoff to lower resolution is expected to increase

the radius of convergence, but at the cost of decreased accu-

racy. This suggests a multiple resolution approach with several

sequential refinements using data at increasingly higher

resolution, for example, as implemented by the STIR option in

SHELX (Sheldrick & Schneider, 1997). At the initial stage the

convergence radius is large. The model is most likely to be

moved closer to the correct position and orientation, but the

accuracy is relatively low. At the subsequent stages the

convergence radius is less critical, but the accuracy is

improved by the inclusion of higher-resolution data. This

approach can be robust but computationally expensive and

requires ad hoc decisions about high-resolution data cutoff

and the number of higher-resolution reflections to be added as
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the refinement progresses. Here we report the results of

numerical experiments aimed at finding a computationally

economical and automated multiple-zone refinement protocol

that still results in a large convergence radius.

The multiple-zone refinement protocol is implemented in

phenix.refine – a macromolecular structure refinement

program (Afonine et al., 2005b) that is under active develop-

ment as part of the PHENIX project (Adams et al., 2002).

Major development goals are increased automation and fast

exploration of new approaches based on a modular archi-

tecture. Available features, among others, include various

refinement targets (maximum likelihood, twinned least

squares, phased maximum-likelihood), refinement of indivi-

dual coordinates and ADPs (isotropic, anisotropic, group, TLS

or any combination), automatic water picking built in to the

refinement, robust bulk-solvent correction (Afonine et al.,

2005a), Cartesian dynamics, simulated annealing, NCS

restraints, refinement at ultra-high resolution (Afonine et al.,

2004, 2007), and joint refinement using X-ray and neutron

data. Here we describe the systematic investigation of rigid-

body refinement based on a large number of trial refinements

in phenix.refine.

2. Methods

2.1. Parameterization of rigid-body motions

A rigid body is a group of atoms subject to a concerted

motion, leaving the atoms fixed relative to each other. In rigid-

body refinement, a macromolecule is split into one or more

non-overlapping rigid groups. The position of each rigid body

is characterized by six degrees of freedom. The body trans-

lation is universally parameterized as three Cartesian or

fractional coordinates. The body orientation is usually defined

by three Euler angles. A large number of Euler angle

conventions are in use (Urzhumtseva & Urzhumtsev, 1997;

Weisstein, 2006). The Euler angles are commonly referred to

as �, �, �. One commonly used convention [e.g. AMoRe

(Navaza, 2001) and REFMAC (Collaborative Computational

Project 4, Number 4, 1994; Murshudov et al., 1997)] is to first

rotate around the Cartesian z axis by the angle �, then around

the y axis by the angle �, and finally around the z axis again by

the angle �; in this paper we refer to this convention as the zyz
convention. At the usual starting point for rigid-body refine-

ment, � = � = � = 0�, � and � are perfectly correlated, which

could potentially lead to numerical instabilities. Another

convention in common use (e.g. Urzhumtsev et al., 1989;

Brünger et al., 1998; Kronenburg, 2004) differs in this respect.

The first two rotations are as before, but the third rotation is

around the x axis. Here we refer to this convention as the xyz

convention. � and � are perfectly correlated only if � = �90�,
values that are highly unlikely to be reached in the course of

rigid-body refinement as the final rotations from the starting

position are typically less than 20�.

2.2. Refinement procedure

In the tests reported below, a rigid-body refinement run is a

series of macro cycles in each of which a bulk-solvent

correction is followed by L-BFGS minimization (Liu &

Nocedal, 1989) (the same minimizer is used in the CNS

program) with a maximum of 25 iterations per macro cycle.

During minimization, an LS or an ML target function

[implemented as defined by Lunin & Skovoroda (1995) and

Afonine et al. (2005a)] is used. All geometry restraints

including nonbonded interactions are disabled. Thus the

refinement is purely based on the experimental data.

It has been shown that a bulk-solvent correction of the low-

resolution data is very important to achieve optimal refine-

ment results (Jiang & Brünger, 1994; Kostrewa, 1997; Badger,

1997). In the tests reported below, we used the bulk-solvent

correction algorithm as described by Afonine et al. (2005a). In

the context of rigid-body refinement, the model shifts are

expected to be large and hence invalidate the bulk solvent

mask calculated from the initial model. Therefore the bulk-

solvent correction is tightly integrated into the refinement and

recomputed between macro-cycles if the model has moved

beyond a certain default threshold.

2.3. Test data and models

Test data and models were taken from an in-house library of

56 structures collected over the course of some time. Table 1

lists reference information for all test structures. The original

experimental data were used in all trial refinements reported

below. To better approach typical practical situations, the

models from the library were modified by deleting all atoms

that are not part of a protein, RNA or DNA molecule.

As a last manipulation, all structures were subject to rigid-

body refinement using data up to 3 Å (or the high-resolution

limit shown in Table 1) with the entire model as one body. The

refined corrections were typically very small. These refined

models were considered as the best possible results and used

as the ideal (reference) model for subsequent comparisons.

For tests with multiple rigid-bodies, seven out of the 56

structures were split into two to six bodies as indicated in

Table 1 (column NB). We included calmodulin and gene-5

models even though they both consist of only one chain.

Calmodulin was chosen because of the space group (P1),

gene-5 because of the small size. In each model, the chain was

split into two parts and a few atoms were deleted to avoid

clashes of the two artificially created bodies.

One of the multi-body structures (1071B) was subject to

multi-body rigid-body refinement at 3 Å to obtain a specific

multi-body reference model, since the displacements with

respect to the one-body model were significant.

2.4. Random displacements

Our goal was to systematically sample the behavior of rigid-

body refinements. For this we investigated three main vari-

ables:

(i) Averaging out model shape-related effects by using a

large number of models (see previous section).

(ii) Sampling a matrix of displacement magnitudes, using

combinations of translations with a 0, 2, 4 and 6 Å shift along a
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random vector and a 0, 5, 10 and 15� rotation around a random
axis.

(iii) Averaging out effects due to interactions of model

shape and translation vectors or rotation axes by sampling a

large number (we used 100) of random vectors and axes for a

given pair of displacement magnitudes.

The combination (translation, rotation) = (0 Å, 0�), i.e. no
change in the starting model position or orientation, was

excluded. To reduce the runtime for the tests, we also chose to

omit the (4 Å, 10�), (6 Å, 10�) and (6 Å, 15�) combinations

since the success rate (see x2.5 for the definition) for such very
large displacements was known to be near zero, on the basis of

preliminary trials. This left 12 combinations to be sampled 100

times for each of the 56 test structures, i.e. a total of 67 200

rigid-body refinement runs per set of trial parameters. When

determining the random translations, continuous allowed

origin shifts (Grosse-Kunstleve, 1999) (e.g. parallel to the

twofold axis in space group P2) were specifically taken into

account: the translation vectors for the first body were chosen

perpendicular to the allowed origin shifts. In space group P1

translations of the first body have no effect on the structure

factor magnitudes and were therefore not considered.

In the tests with multiple rigid bodies, the random transla-

tions and rotations can lead to serious clashes, which are

unlikely to occur in most practical situations since most

molecular replacement programs generally suppress config-

urations with clashes. However, since nonbonded interactions

are not included in our rigid-body refinement procedure

(x2.2), the clashes have no direct effect and we decided to

ignore them.

2.5. Success rates

After each rigid-body refinement run, the root-mean-

square deviation (r.m.s.d.) with respect to the reference pre-

refined model (x2.3) was determined, taking allowed origin

shifts into account. For each set of 100 random displacement

magnitudes (previous section), we counted the number of

refined models with an r.m.s.d. less than or equal to 1.0, 0.5 and

0.25 Å. These numbers are the success rates in percent, given

the chosen r.m.s.d. value. Fig. 1 shows an example plot of the

success rates.

When evaluating the effects of parameter changes, we

compared the success rates using a tolerance to eliminate

noise. Success rates with differences less than or equal to 2%

were considered insignificant. Larger differences were

considered significant and used as a guide in the optimization

of the refinement protocol.

3. Results

3.1. Refinements with fixed high-resolution cutoffs

Our initial test series was a systematic sampling of high-

resolution cutoffs dmin = 3, 4, 6, 8 and 10 Å. Some data sets had

an insufficient number of reflections given the 8 or 10 Å

cutoffs. The largest resolution cutoffs used in these tests are

6 Å for gene-5 and hipip, 8 Å for gpatase, lysozyme, oat-

gabaculine and rnase-p, and 10 Å for all other structures. The

total number of rigid-body refinement runs over all five

resolution ranges was 32 6400 = (50 structures � 5 resolution

cutoffs + 2 structures � 3 resolution cutoffs + 4 structures � 4
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Table 1
Overview of structures used in tests.

Resol. is the high-resolution limit (Å) of the observed data. NA is the number
of atoms used in refinement (protein and nucleic acid only). The PDB ID
column refers to related Protein Data Bank (Berman et al., 2000) entries with
the same space group and a similar unit cell. In some cases, the data and model
deposited in the PDB are slightly different from those used in the tests. NB is
the number of bodies and marks the ten structures used in the second test
series (see x2.3).
Database ID Resol. NA PDB ID NB

group2-intron 3.5 1497 1kxk 1
synaptotagmin 3.2 2186 1dqv
1029B 3.0 9230 1n0e
1038B 3.0 11038 1lql 5
1071B 3.0 6558 1nf2 6
proteasome 2.9 24927 1q5q
sec17 2.9 2217 1qqe
cp-synthase 2.8 4331 1l1e
penicillopepsin 2.8 2366 3app
s-hydrolase 2.8 6666 1a7a
ut-synthase 2.8 7504 1e8c
gere 2.7 3060 1fse
groel 2.7 26957 1oel
aep-transaminase 2.6 16698 1m32 4
rab3a 2.6 2431 1zbd
a2u-globulin 2.5 5148 2a2u 4
flavin-reductase 2.5 3385 1bkj
p32 2.5 4265 1p32
psd-95 2.5 2180 1jxm
qaprtase 2.5 12570 1qpo 1
rnase-s 2.5 1488 1rge
1102B 2.5 2662 1l2f
rh-dehalogenase 2.45 2336 1bn7
armadillo 2.4 3458 3bct
cyanase 2.4 11970 1dw9
fusion-complex 2.4 7025 1sfc
human-otc 2.4 2528 1ep9
mev-kinase 2.4 2506 1kkh
nsf-d2 2.4 1943 1nsf
granulocyte 2.35 1908 2gmf
oat-gabaculine 2.3 9450 1gbn 2
vmp 2.3 7992 1l8w
gpatase 2.25 7786 1ecf
hn-rnp 2.2 1338 1ha1
antitrypsin 2.1 2985 1hp7
pdz 2.1 1372 1kwa
1167B 2.0 2920 1s12
apoferritin 2.0 1354 1gwg
cobd 2.0 2738 1lkc
synapsin 2.0 4636 1auv 1
tryparedoxin 2.0 1145 1qk8
myoglobin 1.9 1227 1n9x
nsf-n 1.9 1518 1qcs
rop 1.9 850 1f4n
epsin 1.8 1210 1edu
gene-5 1.8 673 1vqb 2
ic lyase 1.8 6484 1f61
mbp 1.8 1760 1ytt
p9 1.75 1062 1bkb
1063B 1.7 1926 1lfp
nitrite-reduct 1.7 2582 1et7
insulin 1.7 400 2bn3
lysozyme 1.5 982 1aki
rnase-p 1.5 3607 1nz0
calmodulin 1.1 1150 1exr 2
hipip 0.8 616 1iua
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resolution cutoffs) � 12 rotation–translation shifts � 100

trials. The complete test series was run twice: once using the

LS target function, then again using the ML target function.

We manually reviewed the resulting 2 � 3264 success rate

plots, where each plot was an average over 100 trials.

While there are significant individual differences between

the test structures, the results show a general trend. This

observation led us to prepare plots averaging the success rates

over all structures (Figs. 2 and 3) so that each point in these

plots shows the success rate of 100 � 56 refinements (with a

few refinements less at 8 and 10 Å as explained above). This

leads to the following observations:

(i) The success rates reach a plateau after a certain number

of macro cycles. The height of the plateau depends on both the

displacement magnitude and the high-resolution cutoff. The

larger the displacement magnitudes, the lower the plateau.

The larger the high-resolution cutoff, the higher the plateau.

(ii) The macro cycle at which the plateau is reached depends

on the high-resolution cutoff. The larger the high-resolution

cutoff, the more macro cycles are needed to reach the plateau.

(iii) The difference in the plateau heights for the three

success rate cutoffs (1.0, 0.5, 0.25 Å) strongly depends on the

high-resolution cutoff. With a high-resolution cutoff of 3.0 Å,

the three plateaus in each plot have virtually identical heights.

This suggests that, if a refinement converges to the solution, it

is highly likely to be accurate. As the high-resolution cutoff is

increased, the plateaus are at increasingly different heights.

This means on average the solutions are increasingly less

accurate.

(iv) Increasing the high-resolution cutoff leads to a larger

convergence radius. This effect is most pronounced for

translational displacements when going from a 3.0 to a 4.0 Å

high-resolution cutoff, or from 4.0 to 6.0 Å. Larger high-

resolution cutoffs do not significantly increase the conver-

gence radius. Furthermore, the effect is weaker for rotational

displacements.

(v) The difference in results obtained with the least-squares

target and the maximum-likelihood target are subtle.

Comparing Figs. 2 and 3 we observed that the least-squares

target leads to slightly better success rates using high-resolu-

tion cutoffs of 6.0 Å or larger, and the maximum-likelihood

target is slightly better using high-resolution cutoffs of 3.0 and

4.0 Å.

3.2. Multiple-zone protocol

The observations reported in the previous section lead to

the use of a multiple-zone protocol. The goal is to take

advantage of the larger convergence radius at larger high-

resolution cutoffs and higher accuracy at smaller resolution

cutoffs. The multiple-zone protocol automates refinement

starting with a small number, n_ref(1), of low-resolution

reflections (first zone), and successive addition of reflections

up to a user-defined high-resolution cutoff dmin. A straight-

forward approach is to decrement the high-resolution cutoff

dmin by a certain amount after each round of rigid-body

refinement, similar to the SHELX STIR option. Under this

scheme the zones increase in size with the cube of the number

of reflections. We chose to use a similar but more tunable

function with a parameterization that is designed to be inde-

pendent of the structure to be refined:

n refðzoneÞ ¼ n refð1Þ þ zone factor� ðzone� 1Þzone exponent:

ð1Þ
zone_exponent is a user-defined value. The zone_factor is

computed from a user-defined number of zones, n_zones, and

the number of reflections at the highest resolution cutoff,

n_ref(n_zones):

zone factor ¼ ½n refðn zonesÞ � n refð1Þ�
=ðn zones � 1Þzone exponent: ð2Þ

zone_exponent = 3 corresponds to the SHELX STIR option.

With a smaller value the function is more linear, adding more

reflections more quickly. With a larger value fewer reflections

are added initially and more reflections in the later steps.

n_ref(1) is determined using the formula

n refð1Þ ¼ n refð1Þ1 � ½1þ ðn bodies� 1Þ
�multi body factor�: ð3Þ

Here n_ref(1)1 is a user-supplied value, n_bodies is the

number of user-supplied atom selections for the rigid bodies

and multi_body_factor is a tunable parameter. With multi_

body_factor = 1 the number of reflections for the first reso-

lution zone is a linear function of the number of rigid bodies.

The phenix.refine program provides two alternatives for

determining n_ref(1)1. The user can simply specify the value

directly or specify a low-resolution cutoff from which n_ref(1)1
is computed. In all cases, default values are automatically

chosen by the program, which can be overridden by user-

defined values if required.

3.2.1. Exploration of parameter space. The parameteriza-

tion presented in the previous section is designed to be

independent of the structure to be refined. The critical vari-
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Figure 1
Example of a success rate plot. The horizontal axis designates the number
of refinement macro cycles and the vertical axis designates the success
rate in percent (see x2.5). The solid line is the plot using a 0.25 Å r.m.s.d.
threshold as the criterion for ‘success’, the dashed line with shorter
segments is the plot using a 0.5 Å threshold, and the dashed line with the
longer segments is the plot using a 1.0 Å threshold. The example plot was
obtained for rnase-p with a fixed 6.0 Å high-resolution cutoff for the data,
a random translational displacement magnitude of 2.0 Å and a random
rotational displacement magnitude of 5�.
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Figure 2
Success rate plots using the LS target function. The high-resolution values are in ångströms. The four-by-four grid for each high-resolution cutoff is
arranged by rotational displacement magnitude in the horizontal direction from left to right (0, 5, 10, 15�), and translational displacement magnitude in
the vertical direction downwards (0, 2, 4, 6 Å).

ables are the number of zones n_zones, n_ref(1)1, the

multi_body_factor and the zone_exponent. These values were

optimized with a series of tests, using starting values derived

from the results of the tests described above. To decrease the

runtime requirements for a test series, we reviewed the

refinements with fixed high-resolution cutoffs. In addition to

the seven multi-body refinements, three single-body refine-

ments were chosen with the aim of covering the distribution of

number of atoms versus high-resolution limit of the diffraction

data. The three selected structures are marked in Table 1,

column NB.

A preliminary set of test runs with only seven structures

split into multiple bodies indicated that n_zones = 5,

zone_exponent = 4, multi_body_factor = 1 and n_ref(1)1 = 100

is a good default parameterization. After adding the three

single-body refinements, we then started a second set of tests
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Figure 3
Success rate plots using the ML target function. See the caption of Fig. 2 for a guide to the plots.

exploring the parameter space around these values. The

results are reported in some detail below. Unless noted

otherwise, the maximum-likelihood target was used in all

resolution zones.

To determine the best choice for n_ref(1)1 we ran a test

series with trial values 60, 80, 100, 120, 200 and 400. The values

were chosen on the basis of the behavior of the trial refine-

ments. Table 2 shows a mutual comparison of the n_ref(1)1
values of each trial with the others. Inspection suggests that

the value 100 is the best choice overall for n_ref(1)1.

After identifying n_ref(1)1 = 100 as the best value, we

explored values for multi_body_factor = 0.5, 1 and 2, fixing

n_zones = 5 and zone_exponent = 4 as before. The results in

Table 3 confirm our expectation that a simple linear coupling

(multi_body_factor = 1) of the number of observations and the

number of refineable parameters is optimal.
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Fixing n_ref(1)1 = 100, multi_body_factor = 1 and n_zones =

5, we tried the alternative values zone_exponent = 1, 2, 3, 5

and 6. The results in Table 4 show that zone_exponent = 3 is

the best choice. This result validates the approach used in the

SHELX STIR algorithm.

Fixing n_ref(1)1 = 100, multi_body_factor = 1 and

zone_exponent = 3, we tried the alternative values n_zones =

3, 4, 6, 7, 8 and 9. The disadvantage of using more zones is

increased runtime. However, the results are expected to be

better if more zones are used. This is largely confirmed by the

data in Table 5. The use of more than five zones does not

greatly improve the outcome compared with the use of three

to five zones. Table 6 shows runtime statistics as a function of

the number of zones. For example, using seven zones instead

of five zones increases the runtime, on average, by about 25%.

Thus, using five zones is a practical compromise between

runtime considerations and expected benefit. However, for

difficult cases it could be worth increasing the number of zones

in order to increase the expected success rate, at the cost of

increased runtime. It should also be noted that as rigid-body

refinement is often typically only performed once at the

start of structure refinement investing a some additional
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Table 4
Comparison of success rates for different values of the zone_exponent
parameter (x3.2.1).
See caption of Table 2 for a guide to the data in this table.

zone_exponent 2 3 4 5 6

1 (5, 73, 42) (6, 60, 54) (13, 54, 53) (19, 59, 42) (20, 62, 38)
(5, 73, 42) (6, 60, 54) (13, 55, 52) (19, 59, 42) (21, 61, 38)
(5, 77, 38) (6, 69, 45) (13, 62, 45) (19, 67, 34) (21, 68, 31)

2 (14, 63, 43) (15, 70, 35) (20, 74, 26) (27, 66, 27)
(14, 63, 43) (15, 71, 34) (20, 74, 26) (27, 66, 27)
(13, 71, 36) (15, 76, 29) (22, 77, 21) (25, 73, 22)

3 (33, 62, 25) (34, 71, 15) (34, 75, 11)
(33, 62, 25) (34, 72, 14) (34, 76, 10)
(28, 67, 25) (31, 75, 14) (32, 78, 10)

4 (30, 77, 13) (34, 72, 14)
(31, 76, 13) (34, 71, 15)
(30, 79, 11) (32, 74, 14)

5 (23, 74, 23)
(24, 73, 23)
(20, 79, 21)

Table 5
Comparison of success rates for different values of the n_zones parameter
(x3.2.1).
See caption of Table 2 for a guide to the data in this table.

n_zones 4 5 6 7 8 9

3 (14, 68, 38) (2, 67, 51) (10, 60, 50) (9, 53, 58) (8, 50, 62) (7, 52, 61)
(13, 68, 39) (2, 66, 52) (10, 60, 50) (9, 53, 58) (8, 50, 62) (7, 51, 62)
(13, 73, 34) (2, 74, 44) (9, 65, 46) (9, 61, 50) (8, 57, 55) (7, 59, 54)

4 (7, 70, 43) (9, 70, 41) (7, 65, 48) (4, 59, 57) (4, 62, 54)
(7, 70, 43) (10, 68, 42) (7, 65, 48) (4, 59, 57) (4, 62, 54)
(6, 75, 39) (8, 73, 39) (7, 69, 44) (3, 65, 52) (4, 68, 48)

5 (23, 73, 24) (17, 76, 27) (15, 70, 35) (14, 68, 38)
(24, 72, 24) (17, 76, 27) (15, 70, 35) (14, 69, 37)
(19, 77, 24) (16, 77, 27) (13, 74, 33) (15, 73, 32)

6 (18, 70, 32) (11, 71, 38) (13, 71, 36)
(18, 70, 32) (11, 71, 38) (13, 71, 36)
(17, 76, 27) (11, 74, 35) (13, 77, 30)

7 (18, 73, 29) (17, 79, 24)
(17, 74, 29) (16, 80, 24)
(14, 79, 27) (16, 84, 20)

8 (19, 87, 14)
(20, 85, 15)
(20, 90, 10)

Table 2
Comparison of success rates for different values of the n_ref(1)1
parameter (x3.2.1).
The first row and the first column show the parameter values. The diagonal and
the redundant lower triangle are omitted. Each cell shows three triples of
success rates, for the r.m.s.d. cutoffs 1.0 Å (first row), 0.5 Å (second row) and
0.25 Å (third row), respectively. The left value in each triple is the number of
times the success rate obtained with the parameter value given by the
corresponding row was at least 2% better than that with the parameter value
given by the corresponding column (x2.5); the right value is the number of
times the success rate obtained with the parameter value given by the
corresponding column was at least 2% better than that with the parameter
value given by the corresponding row; the value in the middle is the number of
times the difference between the success rates was smaller than 2%.

n_ref(1)1 80 100 120 200 400

60 (26, 66, 28) (25, 62, 33) (28, 54, 38) (30, 56, 34) (38, 49, 33)
(26, 65, 29) (25, 63, 32) (28, 53, 39) (30, 56, 34) (39, 48, 33)
(26, 71, 23) (25, 68, 27) (27, 59, 34) (27, 59, 34) (34, 54, 32)

80 (24, 72, 24) (27, 63, 30) (35, 53, 32) (39, 55, 26)
(23, 73, 24) (26, 64, 30) (35, 54, 31) (39, 55, 26)
(21, 77, 22) (23, 67, 30) (29, 60, 31) (32, 62, 26)

100 (27, 69, 24) (34, 66, 20) (42, 55, 23)
(27, 69, 24) (33, 67, 20) (41, 56, 23)
(25, 73, 22) (27, 73, 20) (35, 63, 22)

120 (28, 58, 34) (37, 55, 28)
(28, 58, 34) (37, 55, 28)
(23, 64, 33) (31, 62, 27)

200 (33, 66, 21)
(34, 65, 21)
(31, 69, 20)

Table 3
Comparison of success rates for different values of the multi_body_factor
parameter (x3.2.1).
See caption of Table 2 for a guide to the data in this table. However, in this
case the count in the middle of each triplet is given as a sum of two values: the
first value is for zones that are different; the second value is for zones that are
not affected by the parameter and therefore lead to exactly identical results
[see equations (1)–(3) in x3.2; in this case the three one-body structures are
insensitive to the multi_body_factor].

multi_body_factor 1.0 2.0

0.5 (15, 44+36, 25) (15, 36+36, 30)
(15, 45+36, 24) (15, 36+36, 30)
(15, 50+36, 19) (14, 42+36, 25)

1.0 (17, 50+36, 14)
(18, 49+36, 14)
(15, 52+36, 14)
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computing time to obtain the best solution might be well

justified.

3.3. Effect of rotation convention

To analyze the role of different ways to describe the rota-

tion we made a comparative refinement in similar conditions

using the two different Euler angle conventions. Table 7 shows

the success rate comparison using the two different Euler

angle conventions introduced in x2.1. All other parameters

were fixed at the defaults [n_ref(1)1 = 100, multi_body_factor =

1, zone_exponent = 3 and n_zones = 5]. The results are

surprisingly clear: the xyz convention drastically outperforms

the zyz convention. Even though the L-BFGS minimizer used

in the refinements is designed to tolerate singularities, it is

evidently advantageous to avoid them.

3.4. Automatic switching between least-squares and

maximum-likelihood target functions

In x3.1 it was found that the best choice of target function

depends on the high-resolution cutoff. To take advantage of

this knowledge a target_auto_switch_resolution parameter

was introduced. For zones with a high-resolution cutoff larger

than the value of this parameter, the LS target is used, and the

ML target otherwise. With optimal values for the other

parameters as presented in the previous sections, a new series

of four tests were performed, with target_auto_switch_

resolution = 4, 5, 6 and 7 Å. The corresponding success rate

comparisons are shown in Table 8. These data indicate that

switching at a lower value for the resolution cutoff is better

than switching at a higher value. On the basis of the fixed

resolution cutoff results (Figs. 2 and 3), 6 Åwas selected as the

default parameter.

4. Conclusion

Refinement of an atomic model as a rigid body or several

independent rigid bodies is an important and routine step in

macromolecular refinement. By combining multi-zone rigid

body refinement, robust bulk solvent and scaling, maximum

likelihood methods, and large-scale optimizations of key

parameters of the multi-zone protocol, it has been possible to

increase the radius of convergence of rigid-body refinement

and make the process highly automated.

We observe that although likelihood methods do provide

for some degree for automated weighting of data the extent of

this weighting is not sufficient to provide a large radius of

convergence when high-resolution data are used in the rigid-

body refinement. Thus, explicit removal of higher-resolution

data during rigid-body refinement, even when using a like-

lihood target, significantly increases the radius of convergence.

The idea of gradually increasing the refinement resolution

from low to high or simply truncating the high-resolution data

at some point between 3 and 6 Å resolution has been used by

many practitioners for some time. However, the systematic

investigation undertaken here has provided two very impor-

tant enhancements. First, use of the number of reflections to

define the refinement resolution zones, instead of specific

resolution limits, makes the process model-independent. For

example, for relatively small structures cutting the data at 6 Å

or even higher may not leave enough low-resolution reflec-

tions for refinement. In addition, defining the zones by the

number of reflections always assures an adequate amount of

data and an appropriate resolution for the refinement. Second,

since large model shifts are expected during rigid-body

refinement, it is essential to update the bulk solvent model as

often as a model shifts beyond a certain threshold or addi-

tional reflections are included.

Having performed hundreds of thousands of rigid-body

refinements using a set of 56 models different in size, shape

and packing, as well as having different quality experimental
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Table 6
Comparison of runtimes for different values of the n_zones parameter
(x3.2.1).
The runtime statistics shown in each row (columns 2–4) are based on 10 � 12
values (number of test structures � number of displacement combinations).
Columns 5–10 show the ratios of the mean runtimes (mean in the given row
divided by mean in the previous rows).

Runtime (s) n_zones

n_zones Minimum Maximum Mean 3 4 5 6 7 8

3 15.06 571.2 222.567
4 16.69 717.6 263.241 1.18
5 17.77 795.6 295.355 1.33 1.12
6 19.50 879.6 330.116 1.48 1.25 1.12
7 21.61 1018.2 370.33 1.66 1.41 1.25 1.12
8 21.82 1063.8 407.154 1.83 1.55 1.38 1.23 1.10
9 23.28 1191.6 438.968 1.97 1.67 1.49 1.33 1.19 1.08

Table 7
Comparison of success rates using the two Euler angle conventions (xx2.1
and 3.3).

See caption of Table 2 for a guide to the data in this table.

Convention zyz

xyz (75, 40, 5)
(91, 25, 4)
(83, 35, 2)

Table 8
Comparison of success rates using different values for the resolution at
which the target function is switched from least squares to maximum
likelihood (x3.4).
See caption of Table 3 for a guide to the data in this table.

Switch resolution (Å) 5 6 7

4 (1, 56+60, 3) (7, 102, 11) (7, 102, 11)
(0, 57+60, 3) (5, 102, 13) (5, 102, 13)
(0, 57+60, 3) (5, 102, 13) (5, 102, 13)

5 (8, 92+12, 8) (8, 92+12, 8)
(7, 91+12, 10) (7, 91+12, 10)
(6, 92+12, 10) (6, 92+12, 10)

6 (0, 12+108, 0)
(0, 12+108, 0)
(0, 12+108, 0)
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data sets associated with them (resolution and completeness),

we have empirically confirmed our hypothesis that the xyz

rotation parameterization performs better than the zyz para-

meterization since it avoids a singularity near the typical

values for the rotation parameters encountered in refinement.

Our results also define approximate convergence radii for

gradient-driven rigid-body refinement (Figs. 2 and 3).

Our systematic exploration of the parameter space (x3.2.1)
was feasible only because we had access to a computer cluster

with 200 fast CPUs. The tools that we have developed for

running and analyzing the many refinements are being re-used

for evaluating other algorithms and parameterizations. By

making use of the latest computing technology, we can replace

the very slow and subjective process of tuning parameters

based on anecdotal evidence with a more scientific approach.

With modern tools, practical experience that may have taken

many years to accumulate in the past can now be obtained in a

matter of days.

The described algorithms and protocols are implemented in

the refinement program phenix.refine, which is available as

part of the PHENIX package. The program is available from

http://www.phenix-online.org/. The core rigid-body calcula-

tions are part of open source libraries (http://cctbx.

sourceforge.net).
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